This page is a reading diary, inspired by #365papers (or #230papers realistically).

Show abstracts

  • Slatkin (2008) Linkage disequilibrium--understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2017-02-22 linkage disequilibrium; review
    Linkage disequilibrium--the nonrandom association of alleles at different loci--is a sensitive indicator of the population genetic forces that structure a genome. Because of the explosive growth of methods for assessing genetic variation at a fine scale, evolutionary biologists and human geneticists are increasingly exploiting linkage disequilibrium in order to understand past evolutionary and demographic events, to map genes that are associated with quantitative characters and inherited diseases, and to understand the joint evolution of linked sets of genes. This article introduces linkage disequilibrium, reviews the population genetic processes that affect it and describes some of its uses. At present, linkage disequilibrium is used much more extensively in the study of humans than in non-humans, but that is changing as technological advances make extensive genomic studies feasible in other species.
  • Riveron et al. (2014) A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol. 2017-02-22 anopheles funestus; gste2; insecticide resistance; metabolic resistance; benin; cameroon; journal club; ddt; pyrethroids; permethrin; deltamethrin
    BACKGROUND: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. RESULTS: Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. CONCLUSIONS: This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies.
  • Lewontin (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics. 2017-02-20 linkage disequilibrium; selection
    The general problem of the interaction between linkage and selection has been examined for a number of multilocus models. General equations and a method of GL genetic operators” are given for the solution of this problem. Specific numerical cases for two- and five-locus models exhibiting heterosis have been examined with the following results: (1) Loci may be kept in permanent linkage disequilibrium despite gene frequency equilibrium, by natural selection. (2) When epistasis be- tween loci is strong enough disequilibrium will be maintained for genes that are completely unlinked. (3) The epistasis which results in disequilibrium can be generated by simple multiplicative fitnesses, a common situation, if not the most common. (4) The linkage disequilibrium results in higher mean fitness. (5) In multiple-locus models genes quite far apart on the chromosome may be held out of linkage equilibrium by genes between them along the chromosome. The effect is then cumulative along the chromosome. (6) Some experiments with Drosophila are reviewed and the predictions of the models are upheld in the experiments.
  • Templeton et al. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 2017-02-12 drosophila melanogaster; phylogeny; recombination; methods
    We previously developed a cladistic approach to identify subsets of haplotypes defined by restriction endonuclease mapping or DNA sequencing that are associated with significant phenotypic deviations. Our approach was limited to segments of DNA in which little recombination occurs. In such cases, a cladogram can be constructed from the restriction site or sequence data that represents the evolutionary steps that interrelate the observed haplotypes. The cladogram is used to define a nested statistical design to identify mutational steps associated with significant phenotypic deviations. The central assumption behind this strategy is that any undetected mutation causing a phenotypic effect is embedded within the same evolutionary history that is represented by the cladogram. The power of this approach depends upon the confidence one has in the particular cladogram used to draw inferences. In this paper, we present a strategy for estimating the set of cladograms that are consistent with a particular sample of either restriction site or nucleotide sequence data and that includes the possibility of recombination. We first evaluate the limits of parsimony in constructing cladograms. Once these limits have been determined, we construct the set of parsimonious and nonparsimonious cladograms that is consistent with these limits. Our estimation procedure also identifies haplotypes that are candidates for being products of recombination. If recombination is extensive, our algorithm subdivides the DNA region into two or more subsections, each having little or no internal recombination. We apply this estimation procedure to three data sets to illustrate varying degrees of cladogram ambiguity and recombination.
  • Mitchell et al. (2014) Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae. PLoS One. 2017-02-09 journal club; anopheles gambiae; anopheles coluzzii; gste2 I114T; ddt; insecticide resistance; metabolic resistance; vgsc; kdr
    The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T), proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F) to confer extreme levels of DDT resistance in wild caught An. gambiae.
  • Hamilton et al. (2016) Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res. 2017-02-08 plasmodium falciparum; mutation rate; indel; var
    For reasons that remain unknown, the Plasmodium falciparum genome has an exceptionally high AT content compared to other Plasmodium species and eukaryotes in general - nearly 80% in coding regions and approaching 90% in non-coding regions. Here, we examine how this phenomenon relates to genome-wide patterns of de novo mutation. Mutation accumulation experiments were performed by sequential cloning of six P. falciparum isolates growing in human erythrocytes in vitro for 4 years, with 279 clones sampled for whole genome sequencing at different time points. Genome sequence analysis of these samples revealed a significant excess of G:C to A:T transitions compared to other types of nucleotide substitution, which would naturally cause AT content to equilibrate close to the level seen across the P. falciparum reference genome (80.6% AT). These data also uncover an extremely high rate of small indel mutation relative to other species, primarily associated with repetitive AT-rich sequences, in addition to larger-scale structural rearrangements focused in antigen-coding var genes. In conclusion, high AT content in P. falciparum is driven by a systematic mutational bias and ultimately leads to an unusual level of microstructural plasticity, raising the question of whether this contributes to adaptive evolution.
  • Ranson et al. (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J. 2017-02-08 journal club; anopheles gambiae; insecticide resistance; metabolic resistance; gste; ddt
    The sequence and cytological location of five Anopheles gambiae glutathione S-transferase (GST) genes are described. Three of these genes, aggst1-8, aggst1-9 and aggst1-10, belong to the insect class I family and are located on chromosome 2R, in close proximity to previously described members of this gene family. The remaining two genes, aggst3-1 and aggst3-2, have a low sequence similarity to either of the two previously recognized classes of insect GSTs and this prompted a re-evaluation of the classification of insect GST enzymes. We provide evidence for seven possible classes of insect protein with GST-like subunits. Four of these contain sequences with significant similarities to mammalian GSTs. The largest novel insect GST class, class III, contains functional GST enzymes including two of the A. gambiae GSTs described in this report and GSTs from Drosophila melanogaster, Musca domestica, Manduca sexta and Plutella xylostella. The genes encoding the class III GST of A. gambiae map to a region of the genome on chromosome 3R that contains a major DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] resistance gene, suggesting that this gene family is involved in GST-based resistance in this important malaria vector. In further support of their role in resistance, we show that the mRNA levels of aggst3-2 are approx. 5-fold higher in a DDT resistant strain than in the susceptible strain and demonstrate that recombinant AgGST3-2 has very high DDT dehydrochlorinase activity.
  • Lee et al. (2013) Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci USA. 2017-02-06 journal club; anopheles gambiae; anopheles coluzzii; speciation; mali; goundry; guinea-bissau
    The M and S forms of Anopheles gambiae have been the focus of intense study by malaria researchers and evolutionary biologists interested in ecological speciation. Divergence occurs at three discrete islands in genomes that are otherwise nearly identical. An “islands of speciation” model proposes that diverged regions contain genes that are maintained by selection in the face of gene flow. An alternative “incidental island” model maintains that gene flow between M and S is effectively zero and that divergence islands are unrelated to speciation. A “divergence island SNP” assay was used to explore the spatial and temporal distributions of hybrid genotypes. Results revealed that hybrid individuals occur at frequencies ranging between 5% and 97% in every population examined. A temporal analysis revealed that assortative mating is unstable and periodically breaks down, resulting in extensive hybridization. Results suggest that hybrids suffer a fitness disadvantage, but at least some hybrid genotypes are viable. Stable introgression of the 2L speciation island occurred at one site following a hybridization event.
  • Prapanthadara et al. (1995) DDT-resistance in Anopheles gambiae (Diptera: Culicidae) from Zanzibar, Tanzania, based on increased DDT-dehydrochlorinase activity of glutathione S-transferases Bulletin of Entomological Research. 2017-01-31 anopheles gambiae; insecticide resistance; DDT; metabolic resistance; GST
    DDT-resistant Anopheles gambiae Giles from Zanzibar, Tanzania, had increased levels of DDT-dehydrochlorination compared to a DDT-susceptible strain. Glutathione S-transferases (GSTs) are responsible for conversion of DDT to DDE in both the susceptible and resistant strains. Sequential column chromatography, including Q-Sepharose, S-hexylglutathione agarose, hydroxylapatite and phenyl Sepharose, allowed the partial purification of seven GSTs. All seven GSTs possessed different degrees of DDTase activity. There was an eight-fold increase in total DDTase activity in the resistant compared to the susceptible enzymes. Characterization with three substrates, 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB) and DDT, revealed the different substrate specificity for each isolated GST indicating different isoenzymes. GST Va possessed 60% of total DDTase activity suggesting that it contributed most to DDT-metabolism in this insect species. The DDTase activity of the GSTs in both strains of A. gambiae were found to be correlated with the GST activities toward DCNB. Preliminary studies on DDT-resistant and susceptible A. gambiae showed that both DDT-resistance and the increased levels of GST activity were stage specific which suggested that different GSTs may be involved in DDT-resistance in adults and larvae of A. gambiae.
  • Ranson et al. (2000) Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2017-01-31 journal club; anopheles gambiae; insecticide resistance; target-site resistance; DDT; pyrethroids; kdr; vgsc
    A field trial of permethrin-impregnated bednets and curtains was initiated in Western Kenya in 1990, and a strain of Anopheles gambiae showing reduced susceptibility to permethrin was colonized from this site in 1992. A leucine-phenylalanine substitution at position 1014 of the voltage-gated sodium channel is associated with resistance to permethrin and DDT in many insect species, including Anopheles gambiae from West Africa. We cloned and sequenced a partial sodium channel cDNA from the Kenyan permethrin-resistant strain and we identified an alternative substitution (leucine to serine) at the same position, which is linked to the inheritance of permethrin resistance in the F(2) progeny of genetic crosses between susceptible and resistant individuals. The diagnostic polymerase chain reaction (PCR) developed by Martinez-Torres et al. [(1998) Insect Mol Biol 7: 179-184] to detect kdr alleles in field populations of An. gambiae will not detect the Kenyan allele and hence reliance on this assay may lead to an underestimate of the prevalence of pyrethroid resistance in this species. We adapted the diagnostic PCR to detect the leucine-serine mutation and with this diagnostic we were able to demonstrate that this kdr allele was present in individuals collected from the Kenyan trial site in 1986, prior to the introduction of pyrethroid-impregnated bednets. The An. gambiae sodium channel was physically mapped to chromosome 2L, division 20C. This position corresponds to the location of a major quantitative trait locus determining resistance to permethrin in the Kenyan strain of An. gambiae.
  • Berget (1995) Exon Recognition in Vertebrate Splicing. J Biol Chem. 2017-01-27 splicing; review
    The average vertebrate gene consists of multiple small exons (average size, 137 nucleotides) separated by introns that are considerably larger(1). Thus, the vertebrate splicing machinery has the task of finding small desired exons amid much longer introns. The splice site consensus sequences that drive exon recognition are located at the very termini of introns(2, 3). Despite the discriminatory challenge faced during exon recognition in large multiexon premessenger RNAs, vertebrate splice sites are short and poorly conserved. In fact, splice site sequences in mammals are less conserved than their yeast counterparts despite the fact that only a minority of genes in Saccharomyces cerevisiae have introns; and those genes that are split by introns usually have only a single intron(4, 5). Thus, vertebrate splicing contends with a more complex specificity problem via recognition of less precise consensus sequences. Any mechanism for the orchestration of splicing in multiexon vertebrate genes must provide an explanation for this puzzle.
  • Norris et al. (2015) Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proc Natl Acad Sci USA. 2017-01-25 journal club; anopheles gambiae; anopheles coluzzii; vgsc; kdr; insecticide resistance; target-site resistance; mali
    Animal species adapt to changes in their environment, including man-made changes such as the introduction of insecticides, through selection for advantageous genes already present in populations or newly arisen through mutation. A possible alternative mechanism is the acquisition of adaptive genes from related species via a process known as adaptive introgression. Differing levels of insecticide resistance between two African malaria vectors, Anopheles coluzzii and Anopheles gambiae, have been attributed to assortative mating between the two species. In a previous study, we reported two bouts of hybridization observed in the town of Selinkenyi, Mali in 2002 and 2006. These hybridization events did not appear to be directly associated with insecticide-resistance genes. We demonstrate that during a brief breakdown in assortative mating in 2006, A. coluzzii inherited the entire A. gambiae-associated 2L divergence island, which includes a suite of insecticide-resistance alleles. In this case, introgression was coincident with the start of a major insecticide-treated bed net distribution campaign in Mali. This suggests that insecticide exposure altered the fitness landscape, favoring the survival of A. coluzzii/A. gambiae hybrids, and provided selection pressure that swept the 2L divergence island through A. coluzzii populations in Mali. We propose that the work described herein presents a unique description of the temporal dynamics of adaptive introgression in an animal species and represents a mechanism for the rapid evolution of insecticide resistance in this important vector of human malaria in Africa.
  • Davies et al. (2007) A comparative study of voltage-gated sodium channels in the Insecta: implications for pyrethroid resistance in Anopheline and other Neopteran species. Insect Mol Biol. 2017-01-16 anopheles gambiae; insecticide resistance; target-site resistance; vgsc; kdr; tanzania
    We report the complete cDNA sequence of the Anopheles gambiae voltage-gated sodium channel (VGSC) alpha-subunit isolated from mature adult mosquitoes. The genomic DNA contains 35 deduced exons with a predicted translation of <or= 2139 amino acid cDNAs. The transcription of the gene is, however, complex, alternate splicing being evident for at least five optional exons (or exon segments) and two sets of mutually exclusive exons. Overall gene organization was also compared with that of other VGSCs within the Insecta. Several insecticides used in mosquito control (including DDT and synthetic pyrethroids) target the VGSC. Isolation of the sodium channel cDNA for An. gambiae: (1) allows prediction of likely single nucleotide polymorphisms that may arise at residue L1014 to cause resistance to insecticides; (2) defines An. gambiae exon usage in key areas of the VGSC protein that are known (from previous studies in a range of different pest species) to have roles in altering insecticide susceptibility and in generating resistance; and (3) is a critical first step towards development of refined malarial control strategies and of new diagnostics for resistance monitoring.
  • Dong et al. (2014) Molecular Biology of Insect Sodium Channels and Pyrethroid Resistance. Insect Biochem Mol Biol. 2017-01-11 insecticide resistance; target-site resistance; vgsc; kdr; anopheles gambiae; drosophila melanogaster; musca domestica; plutella xylostella; blatella germanica
    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Most of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors.
  • Ranson and Lissenden (2016) Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control. Trends Parasitol. 2017-01-10 insecticide resistance; anopheles gambiae; anopheles funestus
    Malaria control is reliant on insecticides to control the mosquito vector. As efforts to control the disease have intensified, so has the selection pressure on mosquitoes to develop resistance to these insecticides. The distribution and strength of this resistance has increased dramatically in recent years and now threatens the success of control programs. This review provides an update on the current status of resistance to the major insecticide classes in African malaria vectors, considers the evidence that this resistance is already compromising malaria control efforts, and looks to the future to highlight some of the new insecticide-based tools under development and the challenges in ensuring they are most effectively deployed to manage resistance.
  • Lynd et al. (2010) Field, genetic, and modeling approaches show strong positive selection acting upon an insecticide resistance mutation in Anopheles gambiae s.s. Mol Biol Evol. 2017-01-10 anopheles gambiae; anopheles coluzzii; insecticide resistance; target-site resistance; vgsc; kdr; selection
    Alleles subject to strong, recent positive selection will be swept toward fixation together with contiguous sections of the genome. Whether the genomic signatures of such selection will be readily detectable in outbred wild populations is unclear. In this study, we employ haplotype diversity analysis to examine evidence for selective sweeps around knockdown resistance (kdr) mutations associated with resistance to dichlorodiphenyltrichloroethane and pyrethroid insecticides in the mosquito Anopheles gambiae. Both kdr mutations have significantly lower haplotype diversity than the wild-type (nonresistant) allele, with kdr L1014F showing the most pronounced footprint of selection. We complement these data with a time series of collections showing that the L1014F allele has increased in frequency from 0.05 to 0.54 in 5 years, consistent with a maximum likelihood-fitted selection coefficient of 0.16 and a dominance coefficient of 0.25. Our data show that strong, recent positive selective events, such as those caused by insecticide resistance, can be identified in wild insect populations.
  • Gatton et al. (2013) The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution. 2017-01-09 journal club; anopheles gambiae; insecticide resistance; behavioural resistance
    Over the past decade the use of long-lasting insecticidal nets (LLINs), in combination with improved drug therapies, indoor residual spraying (IRS), and better health infrastructure, has helped reduce malaria in many African countries for the first time in a generation. However, insecticide resistance in the vector is an evolving threat to these gains. We review emerging and historical data on behavioral resistance in response to LLINs and IRS. Overall the current literature suggests behavioral and species changes may be emerging, but the data are sparse and, at times unconvincing. However, preliminary modeling has demonstrated that behavioral resistance could have significant impacts on the effectiveness of malaria control. We propose seven recommendations to improve understanding of resistance in malaria vectors. Determining the public health impact of physiological and behavioral insecticide resistance is an urgent priority if we are to maintain the significant gains made in reducing malaria morbidity and mortality.
  • Eckhoff et al. (2016) Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc Natl Acad Sci USA. 2017-01-05 gene drive; modelling; anopheles gambiae; anopheles arabiensis
    The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different possible approaches including population replacement with introduced genes limiting malaria transmission, driving-Y chromosomes to collapse a mosquito population, and gene drive disrupting a fertility gene and thereby achieving population suppression or collapse. Each of these approaches has had recent success and advances under laboratory conditions, raising the urgency for understanding how each could be deployed in the real world and the potential impacts of each. New analyses are needed as existing models of gene drive primarily focus on nonseasonal or nonspatial dynamics. We use a mechanistic, spatially explicit, stochastic, individual-based mathematical model to simulate each gene drive approach in a variety of sub-Saharan African settings. Each approach exhibits a broad region of gene construct parameter space with successful elimination of malaria transmission due to the targeted vector species. The introduction of realistic seasonality in vector population dynamics facilitates gene drive success compared with nonseasonal analyses. Spatial simulations illustrate constraints on release timing, frequency, and spatial density in the most challenging settings for construct success. Within its parameter space for success, each gene drive approach provides a tool for malaria elimination unlike anything presently available. Provided potential barriers to success are surmounted, each achieves high efficacy at reducing transmission potential and lower delivery requirements in logistically challenged settings.
  • Hu et al. (2016) Mass seasonal bioflows of high-flying insect migrants. Science. 2017-01-04 migration
    Migrating animals have an impact on ecosystems directly via influxes of predators, prey, and competitors and indirectly by vectoring nutrients, energy, and pathogens. Although linkages between vertebrate movements and ecosystem processes have been established, the effects of mass insect "bioflows" have not been described. We quantified biomass flux over the southern United Kingdom for high-flying (>150 meters) insects and show that ~3.5 trillion insects (3200 tons of biomass) migrate above the region annually. These flows are not randomly directed in insects larger than 10 milligrams, which exploit seasonally beneficial tailwinds. Large seasonal differences in the southward versus northward transfer of biomass occur in some years, although flows were balanced over the 10-year period. Our long-term study reveals a major transport process with implications for ecosystem services, processes, and biogeochemistry.
  • Keightley et al. (2014) Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics. 2017-01-03 mutation rate; drosophila melanogaster
    We employed deep genome sequencing of two parents and 12 of their offspring to estimate the mutation rate per site per generation in a full-sib family of Drosophila melanogaster recently sampled from a natural population. Sites that were homozygous for the same allele in the parents and heterozygous in one or more offspring were categorized as candidate mutations and subjected to detailed analysis. In 1.23 × 10(9) callable sites from 12 individuals, we confirmed six single nucleotide mutations. We estimated the false negative rate in the experiment by generating synthetic mutations using the empirical distributions of numbers of nonreference bases at heterozygous sites in the offspring. The proportion of synthetic mutations at callable sites that we failed to detect was <1%, implying that the false negative rate was extremely low. Our estimate of the point mutation rate is 2.8 × 10(-9) (95% confidence interval = 1.0 × 10(-9) - 6.1 × 10(-9)) per site per generation, which is at the low end of the range of previous estimates, and suggests an effective population size for the species of ∼1.4 × 10(6). At one site, point mutations were present in two individuals, indicating that there had been a premeiotic mutation cluster, although surprisingly one individual had a G→A transition and the other a G→T transversion, possibly associated with error-prone mismatch repair. We also detected three short deletion mutations and no insertions, giving a deletion mutation rate of 1.2 × 10(-9) (95% confidence interval = 0.7 × 10(-9) - 11 × 10(-9)).
  • Keightley et al. (2015) Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol Biol Evol. 2017-01-03 mutation rate; heliconius melpomene
    We estimated the spontaneous mutation rate in Heliconius melpomene by genome sequencing of a pair of parents and 30 of their offspring, based on the ratio of number of de novo heterozygotes to the number of callable site-individuals. We detected nine new mutations, each one affecting a single site in a single offspring. This yields an estimated mutation rate of 2.9 × 10(-9) (95% confidence interval, 1.3 × 10(-9)-5.5 × 10(-9)), which is similar to recent estimates in Drosophila melanogaster, the only other insect species in which the mutation rate has been directly estimated. We infer that recent effective population size of H. melpomene is about 2 million, a substantially lower value than its census size, suggesting a role for natural selection reducing diversity. We estimate that H. melpomene diverged from its Müllerian comimic H. erato about 6 Ma, a somewhat later date than estimates based on a local molecular clock.

This page uses List.js.